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Non Linear Data Structures - Graphs 
 
 
 

4.1 DEFINITION 

A graph G = (V, E) consists of a set of vertices, V and set of edges E. 

Vertics are referred to as nodes and the arc between the nodes are referred to as Edges. Each 

edge is a pair (v, w) where v, w  V. (i.e.) v = V1, w = V2... 

Fig. 4.1 

Here V1, V2, V3, V4 are the vertices and (V1, V2), (V2, V3), (V3, V4), (V4, V1), (V2, V4), (V1, 

V3) are edges. 

4.2 REPRESENTATION OF GRAPH 

Graph can be represented by Adjacency Matrix and Adjacency list. 

One simple way to represents a graph is Adjacency Matrix. 

The adjacency Matrix A for a graph G = (V, E) with n vertices is an n x n matrix, such that 

Aij = 1, if there is an edge Vi to Vj 

Aij = 0, if there is no edge. 

Adjacency Matrix For Directed Graph 
 

V1 V2 V3 V4 

V1 

V2 

V3 

V4 

Fig. 4.2.1 Fig. 4.2.2 

V1 V2 

V3 V4 

0 1 1 0 

0 0 0 1 

0 1 0 0 

0 0 1 0 
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4.2 Introduction to Data Structures and Algorithms 
 

Example V1,2 = 1 Since there is an edge V1 to V2 

Similarly V1,3 = 1, there is an edge V1 to V3 

V1,1 & V1,4 = 0, there is no edge. 

Adjacency Matrix For Undirected Graph 

V1 V2 V3 V4 

V1 

V2 

V3 

V4 

 

Fig. 4.2.3 Fig. 4.2.4 

Adjacency Matrix For Weighted Graph 

To solve some graph problems, Adjacency matrix can be constructed as 

Aij = Cij, if there exists an edge from Vi to Vj 

Aij = 0, if there is no edge & i = j 

If there is no arc from i to j, Assume C[i, j] =    where i  j . 

V1 V2 V3 V4 

 

 

 

 

 

 

 

 

Advantage 

 

 

 

 

 

 

 
Fig. 4.2.5 

V1 

V2 

V3 

V4 

Fig. 4.2.6 

* Simple to implement. 

Disadvantage 

* Takes O(n2) space to represents the graph 

* It takes O(n2) time to solve the most of the problems. 

Adjacency List Representation 

In this representation, we store a graph as a linked structure. We store all vertices in a list 

and then for each vertex, we have a linked list of its adjacency vertices 

V1 V2 

V3 V4 

V1 
3 

V2 

9 1 7 

V3  V4 

8 

0 1 1 0 

1 0 1 1 

1 1 0 1 

0 1 1 0 

 

0 3 9  

 0  7 

 1 0  

 1 8 0 
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4.2 Introduction to Data Structures and Algorithms 
 

Adjacency List 
 

1 

2 

3 

4 
 

5 

6 

7 
 

Fig. 4.2.7 

4.3 TYPES OF GRAPH 

Directed Graph (or) Digraph 

Directed graph is a graph whichconsists of directed edges, where each edge in E is 

unidirectional. It is also referred as Digraph. If (v, w) is a directed edge then (v, w) # (w, v) 

 

 

 

(V1, V2)  (V2, V1) 
 

 

Fig. 4.3.1 

Undirected Graph 

An undirected graph is a graph, which consists of undirected edges. If (v, w) is an 

undirected edge then (v,w) = (w, v) 

 

 

 

(V1, V2) = (V2, V1) 

 

 

Fig. 4.3.2 
 

Weighted Graph 

A graph is said to be weighted graph if every edge in the graph is assigned a weight or value. 

It can be directed or undirected graph. 

6 

7 

7 6 5 3 

6 

5 4 

4 3 2 

V1 V2 

V3 
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V3 
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V1 V2 

V3 V4 

V1 V2 

 

 

  
 

Fig. 4.3.4 (a) Fig. 4.3.4(b) 

Complete Graph 

A complete graph is a graph in which there is an edge between every pair of vertics. A 

complete graph with n vertices will have n (n - 1)/2 edges. 

 

 

Fig. 4.3.5 Fig. 4.3.5 (a) Vertices of a graph 

In fig. 4.3.5 

Number of vertics is 4 

Number of edges is 6 

(i.e) There is a path from every vertex to every other vertex. 

A complete digraph is a strongly connected graph. 

Strongly Connected Graph 

If there is a path from every vertex to every other vertex in a directed graph then it is said to 

be strongly connected graph. Otherwise, it is said to be weakly connected graph. 
 

  

 
Path 

Fig. 4.3.6 Strongly Connected Graph Fig. 4.3.7 Weakly Connected Graph 

 

A path in a graph is a sequence of vertices 1 ,2 , ......n such that i ,i1  E for 

1  i  N . Referring the Fig. 4.3.7 the path from V1 to V3 is V1, V2, V3. 

V1 V2 

V3 

V1 V2 
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1 2 

3 

V1 V2 

V3 V4 

Length 

The length of the path is the number of edges on the path, which is equal to N-1, where N 

represents the number of vertices. 

The length of the above path V1 to V3 is 2. (i.e) (V1, V2), (V2, V3). 

If there is a path from a vertex to itself, with no edges, then the path length is 0. 

Loop 

 
loop. 

 
 

If the graph contains an edge (v, v) from a vertex to itself, then the path is referred to as a 

Simple Path 

A simple path is a path such that all vertices on the path, except possibly the first and the last 

are distinct. 

A simple cycle is the simple path of length atleast one that begins and ends at the same 

vertex. 

Cycle 

A cycle in a graph is a path in which first and last vertex are the same. 
 

Fig. 4.3.8 

A graph which has cycles is referred to as cyclic graph. 

Degree 

The number of edges incident on a vertex determines its degree. The degree of the vertex V 

is written as degree (V). 

The indegree of the vertex V, is the number of edges entering into the vertex V. 

Similarly the out degree of the vertex V is the number of edges exiting from that vertex V. 
 

Fig. 4.3.9 

In fig. 7.1.9 

Indegree (V1) = 2 
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A 

B C 

D 
E 

Outdegree (V1) = 1 

ACyclic Graph 

A directed graph which has no cycles is referred to as acyclic graph. It is abbreviated as 

DAG. 

DAG - Directed Acyclic Graph. 

 

Fig. 4.3.10 

 

4.4 GRAPH TRAVERSAL 

A graph traversal is a systematic way of visiting the nodes in a specific order. There are two 

types of graph traversal namely, 

 Depth first traversal 

 Breadth first traversal 

Breadth First Traversal 

Breadth First Search (BFS) of a graph G starts from an unvisited vertex u. Then all 

unvisited vertices vi adjacent to  u  are  visited and  then  all  unvisited  vertices  wj  adjacent  to  

vi are visited and so on.  The traversal  terminates when there are no more nodes to visit.  

Breadth first search uses a queue data structure to keep track of the order of nodes whose 

adjacent nodes are to be visited. 

Steps to implement breadth first search 

Step 1: Choose any node in the graph,  designate it  as  the  search  node  and  mark it 

as visited. 

Step 2: Using the adjacency matrix of the graph, find all  the unvisited adjacent  nodes 

to the search node and enqueue them into the queue Q. 

Step 3: Then the node is dequeued from the queue. Mark that node as visited and 

designate it as the new search node. 

Step 4: Repeat step 2 and 3 using the new search node. 

Step 5: This process continues until the queue Q which keeps track of the adjacent 

nodes is empty. 
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Void BFS (vertex u) 

{ 

Initialize queue Q; 

visited [u] = 1; 

Enqueue (u, Q); 

while (! Isempty(Q)) 

{ 

u = Dequeue (Q); 

print u; 

for all vertices v adjacent  to  u do 

if (visited [v] = = 0) then 

{ 

Enqueue (v, Q) 

visited [v] = 1; 

} 

} 

} 

Routine for breadth first search 

Example: 

 

 
Adjacency matrix 

 

 

Figure 4.4.1 
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Figure 4.4.2 
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1 0 1 1 
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A 

B C 

D 

Implementation 

1. Let ‗A‘ be the source vertex. Mark it to as visited. 

2. Find the adjacent unvisited vertices of ‗A‘ and enqueue then into the queue.  

Here B and C are adjacent nodes of A 
 

 

 
 

and B and C are enqueued. 

......... 

 

3. Then  vertex  ‗B‘  is  dequeued  and  its  adjacent  vertices  C  and  D  are   taken   

from the adjacency  matrix  for  enqueuing.  Since  vertex  C  is  already  in  the  

queue, vertex D alone is enqueued. 

 

......... 
 

 

Here B is dequeued, D is enqueued. 

4. Then vertex ‗C‘ is  dequeued  and  its  adjacent  vertices  A,  B  and  D  are  found  

out. Since vertices A and B  are  already  visited  and  vertex  D  is  also  in  the  

queue, no enqueue operation takes place. 

 

......... 
 

 

Here C is dequeued 

5. Then   vertex   ‗D‘  is  dequeued. This process terminates  as  all  the  vertices 

are visited and the queue is also empty. 

 

Figure 4.4.3: Breadth first spanning tree 

Applications of breadth first search 

1. To check whether the graph is connected or not. 
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Void DFS (Vertex V) 
 

{ 

visited [V] = True; 

for each W adjacent to V 

if (! visited [W]) 

Dfs (W); 

} 

4.5 DEPTH FIRST SEARCH 

Depth first works by selecting one vertex V of G as a start vertex ; V is marked visited. 

Then each unvisited vertex adjacent to V is searched in turn using depth first search recursively. 

This process continues until a dead end (i.e) a vertex with no adjacent unvisited vertices is 

encountered. At a deadend, the algorithm backsup one edge to the vertex it came from and tries to 

continue visiting unvisited vertices from there. 

The algorithm eventually halts after backing up to the starting vertex, with the latter being 

a dead end. By then, all the vertices in the same connected component as the starting vertex have 

been visited. If unvisited vertices still remain, the depth first search must be restarted at any one of 

them. 

To implement the Depthfirst Search perform the following Steps : 

Step : 1 Choose any node in the graph. Designate it as the search node and mark it as 

visited. 

Step :  2  Using the adjacency matrix of the graph, find a node adjacent to the search.  

node that has not been visited yet. Designate this as the new search node and 

mark it as visited. 

Step : 3 Repeat step 2 using the new search node.  If no nodes satisfying (2) can be  

found, return to the previous search node and continue from there. 

Step : 4 When a return to the previous search node in (3) is impossible, the search from 

the originally choosen search node is complete. 

Step : 5 If the graph still contains unvisited nodes, choose any node that has not been 

visited and repeat step (1) through (4). 

Routine for Depth First Search 
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A B 

C D 
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C 

Example : - 
 

 

 
Adjacency Matrix 

 

A 

B 

C 

D 

Fig. 4.5 

 
A B C D 

Implementation 

1. Let ‗A‘ be the source vertex. Mark it to be visited. 

2. Find the immediate adjacent unvisited vertex ‗B‘ of ‗A‘ Mark it to be visited. 

3. From ‗B‘ the next adjacent vertex is ‗d‘ Mark it has visited. 

4. From ‗D‘ the next unvisited vertex is ‗C‘ Mark it to be visited. 

 

 

Depth First Spanning Tree 

0 1 1 1 

1 0 0 1 

1 0 0 1 

1 1 1 0 
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A 

B D E 

C 

A 

B 

Applications of Depth First Search 

1. To check whether the undirected graph is connected or not. 

2. To check whether the connected undirected graph is Bioconnected or not. 

3. To check the a Acyclicity of the directed graph. 

4.5.1 Undirected Graphs 

A undirected graph is ‗connected‘ if and only if a depth first search starting from any node 

visits every node. 
 

An Undirected graph 

Adjacency Matrix 

A B C D E 

A 

B 

C 

D 

E 

Implementation 

We start at vertex ‗A‘. Then Mark A as visited and call DFS (B) recursively, Dfs (B) Marks 

B as visited and calls Dfs(c) recursively. 

 

Fig. 4.5.1 (a) 

0 1 0 1 1 

1 0 1 1 0 

0 1 0 1 1 

1 1 1 0 0 

1 0 1 0 0 
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A 

B 

C 

A 

B 

C 

D 

A 

B 

C 

D 
E 

Dfs (c) marks C as visited and calls Dfs (D) recursively. No recursive calls are made to Dfs 

(B) since B is already visited. 
 

 
Fig. 4.5.1 (b) 

Dfs(D) marks D as visited. Dfs(D) sees A,B,C as marked so no recursive call is made there, 

and Dfs(D) returns back to Dfs(C). 
 

Fig. 4.5.1 (c) 

Dfs(C) calls Dfs(E), where E is unseen adjacent vertex to C. 

Fig. 4.5.1 (d) 
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/* Assume that the graph is read into an adjacency matrix and that the indegrees are 

computed for every vertices and placed in an array (i.e. Indegree [ ] ) */ 

void Topsort (Graph G) 

{ 

Queue Q ; 

int counter = 0; 

Vertex V, W ; 

Q = CreateQueue (NumVertex); 

Makeempty (Q); 

for each vertex V 

if (indegree [V] = = 0) 

Enqueue (V, Q); 

while (! IsEmpty (Q)) 

{ 

V = Dequeue (Q); 

TopNum [V] = + + counter; 

Since all the vertices starting from ‗A‘ are visited, the above graph is said to be connected. 

If the graph is not connected, then processing all nodes requires reversal calls to Dfs, and each 

generates a tree. This entire collection is a depth first spanning forest. 

4.6 TOPOLOGICAL SORT 

A topological sort is a linear ordering of vertices in a directed acyclic graph such that if 

there is a path from Vi to Vj, then Vj appears after Vi in the linear ordering. 

Topological ordering is not possible. If the graph has a cycle, since for two vertices v and w 

on the cycle, v precedes w and w precedes v. 

To implement the topological sort, perform the following steps. 

Step 1 : - Find the indegree for every vertex. 

Step 2 : - Place the vertices whose indegree is ‗0‘ on the empty queue. 

Step 3 : - Dequeue the vertex V and decrement the indegree‘s of all its adjacent 

vertices. 

Step 4 : - Enqueue the vertex on the queue, if its indegree falls to zero. 

Step 5 : - Repeat from step 3 until the queue becomes empty. 

Step 6 : - The topological ordering is the order in which the vertices dequeued. 

Routine to perform Topological Sort 
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Note : 

Enqueue (V, Q) implies to insert a vertex V into the queue Q. 

Dequeue (Q) implies to delete a vertex from the queue Q. 

TopNum [V] indicates an array to place the topological numbering. 

Example 1 : 
 

a b c d 

a 

b 

c 

d 
 

Fig. 4.6.1 Adjacency Matrix 

Step 1 

Number of 1‘s present in each column of adjacency matrix represents the indegree of the 

corresponding vertex. 

In fig 4.6.1 Indegree [a] = 0 Indegree [b] = 1 

Indegree [c] = 2 Indegree [d] = 2 

Step 2 

Enqueue the vertex, whose indegree is ‗0‘ 

In fig 4.6.1 vertex ‗a‘ is 0, so place it on the queue. 

Step 3 

Dequeue the vertex ‗a‘ from the queue and decrement the indegree‘s of its adjacent vertex 

‗b‘ & ‗c‘ 

Hence,Indegree [b] = 0 and Indegree [c] = 1 

for each W adjacent to V 

if (--Indegree [W] = = 0) 

Enqueue (W, Q); 

} 

if (counter ! = NumVertex) 

Error (― Graph has a cycle‖); 

DisposeQueue (Q); /* Free the Memory */ 

} 

a 

b c 

d 

0 1 1 0 

0 0 1 1 

0 0 0 1 

0 0 0 0 
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V1 V2 

V3 V4 V5 

V6 V7 

Now, Enqueue the vertex ‗b‘ as its indegree becomes zero. 

Step 4 

Dequeue the vertex ‗b‘ from Q and decrement the indegree‘s of its adjacent vertex ‗c‘ and ‗d‘. 

Hence, Indegree [c] = 0 and Indegree [d] = 1 

Now, Enqueue the vertex ‗c‘ as its indegree falls to zero. 

Step 5 

Dequeue the vertex ‗c‘ from Q and decrement the indegree‘s of its adjacent vertex ‗d‘. 

Hence, Indegree [d] = 0 

Now, Enqueue the vertex ‗d‘ as its indegree falls to zero. 

Step 6 

Dequeue the vertex ‗d‘. 

Step 7 

As the queue becomes empty, topological ordering is performed, which is nothing but, the 

order in which the vertices are dequeued. 
 

VERTEX 1 2 3 4 

a 0 0 0 0 

b 1 0 0 0 

c 2 1 0 0 

d 2 2 1 0 

ENQUEUE a b c d 

DEQUEUE a b c d 
 

Result of Applying Topological Sort to the Graph in Fig. 4.6.1 

Example 2 : 
 

 

 

Fig 4.6.2 
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Adjacency Matrix :- 
 

 
V1 V2 V3 V4 V5 V6 V7 

V1 

V2 

V3 

V4 

V5 

V6 

V7 

INDEGREE 

0 1 1 1 0 0 0 

0 0 0 1 1 0 0 

0 0 0 0 0 1 0 

0 0 1 0 0 1 1 

0 0 0 1 0 0 1 

0 0 0 0 0 0 0 

0 0 0 0 0 1 0 

0 1 2 3 1 3 2 

Indegree [V1] = 0 Indegree [V2] = 1 Indegree [V3] = 2 

Indegree [V4] = 3 Indegree [V5] = 1 Indegree [V6] = 3 

Indegree [V7] = 2 
INDEGREE BEFORE DEQUEUE # 

 

VERTEX 1 2 3 4 5 6 7 

V1 0 0 0 0 0 0 0 

V2 1 0 0 0 0 0 0 

V3 2 1 1 1 0 0 0 

V4 3 2 1 0 0 0 0 

V5 1 1 0 0 0 0 0 

V6 3 3 3 3 2 1 0 

V7 2 2 2 1 0 0 0 

ENQUEUE V1 V2 V5 V4 V3, V7 V6 

DEQUEUE V1 V2 V5 V4 V3 V7 V6 

Result of Applying Topological Sort to the Graph in Fig. 4.6.2 

The topological order is V1, V2, V5, V4, V3, V7, V6 

Analysis 

The running time of this algorithm is 0 E 

represents the vertices of the graph. 

4.7 BICONNECTIVITY 

+ V  . where E represents the Edges & V 

A connected undirected graph is biconnected if there are no vertices whose removal 

disconnects the rest of the graph. 
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A connected undirected graph is biconnective if there are no vertices whose removal 

disconnects the rest of the graph. 

• A biconnected undirected graph is a connected graph that is not broken into 

disconnected pieces by deleting any single vertex (and its incident edges). 

• A biconnected directed graph is one such that for any two vertices v and w there are 

two directed paths from v to w which have no vertices in common other than v and 

w. 

• If a is not bio-connected, the vertices whose removal would disconnect the graph is 

called articulation points. 

 

4.7.1 Equivalent definitions of a biconnected graph G: 
 

• Graph G has no separation edges and no separation vertices 

 

• For any two vertices u and v of G, there are two disjoint simple paths between u and 

v (i.e., two simple paths between u and v that share no other vertices or edges) 

• For any two vertices u and v of G, there is a simple cycle containing u and v. 

 
4.7.2. Properties of Biconnected Graphs 

 

• There are two disjoint paths between any two vertices. 

 

• There is a simple cycle through any two vertices. 

 

Example: 
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4.7.3. Biconnected Components 

• Biconnected component of a graph G 

• A maximal biconnected subgraph of G, or 

• A subgraph consisting of a separation edge of G and its end vertices 

• Interaction of biconnected components 

• An edge belongs to exactly one biconnected component 

• A nonseparation vertex belongs to exactly one biconnected component 

• A separation vertex belongs to two or more biconnected components 

• Example of a graph with four biconnected components ORD PVD 
 

Given a graph having N vertices and M edges, count the number of biconnected components 

having odd number of vertices and even number of vertices. 

Input: 

First    line    consists    of    two     space    separated    integers    N     and    M.    

M lines follow each containing two space separated integers X and Y denoting there is an edge 

between vertices X and Y. 

Output: 

Print two space separated integers where first integer denotes the number of biconnected 

components having odd number of vertices and second integer denotes number of biconnected 

components having even number of vertices. 

 
Constraints: 

1  N  10 

1  M  N  N12 

0 X, Y  N 
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E 
G 

4.8 ARTICULATION POINTS OR CUT VERTEX 

The vertices whose removal would disconnect the graph are known as articulation points. 
 

 

 
Fig. 4.8 Connected Undirected Graph 

Here the removal of ‗C‘ vertex will disconnect G from the graph. 

Similarly removal of ‗D‘ vertex will disconnect E & F from the graph. Therefore ‗C‘ & ‗D‘ 

are articulation points. 
 

 

 
Fig. 4.8 (a) Removal of vertex ‘C’ 
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D 

 

  

Fig. 4.8 (b) Removal of vertex ‘D’ 

The graph is not biconnected, if it has articulation points. 

Depth first search provides a linear time algorithm to find all articulation points in a con- 

nected graph. 

Steps to find Articulation Points : 

Step 1 : Perform Depth first search, starting at any vertex 

Step 2 : Number the vertex as they are visited, as Num (v). 

Step 3 : Compute the lowest numbered vertex for every vertex v in the Depth first 

spanning tree, which we call as low (w), that is reachable from v by taking 

zero or more tree edges and then possibly one back edge. By definition, Low(v) 

is the minimum of 

(i) Num (v) 

(ii) The lowest Num (w) among all back edges (v, w) 

(iii) The lowest Low (w) among all tree edges (v, w) 

Step 4 : (i) The root is an articulation if and only if it has more than two children. 

(ii) Any vertex v other than root is an articulation point if and only if v has 

same child w such that Low (w)  Num (v), The time taken to compute 

this algorithm an a graph is 0 E + V  . 
Note 

For any edge (v, w) we can tell whether it is a tree edge or back edge merely by checking 

Num (v) and Num (w). 

If Num (w) > Num (v) then the edge is a back edge. 

B A 

C 

G 

F 

E 
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void AssignLow (Vertex V) 

{ 

Vertex W; 

Low [V] = Num [V]; /* Rule 1 */ 

for each W adjacent to V 

{ 

If (Num [W] > Num [V]) /* forward edge */ 

{ 

Assign Low (W); 

If (Low [W]> = Num [V]) 

Printf (―% V is an articulation pt \n‖, V); 

Low[V] = Min (Low [V], Low[W]); /* Rule 3*/ 

} 

else 

if (parent [V] ! = W) /* Back edge */ 

Low [V] = Min (Low [V], Num [W])); /* Rule 2*/ 

} 

} 

Tree edge (v, w) 

v w 

 

Num (v) = 1  Num (w) = 2 

Back edge (w, v) 

Fig. 4.8.3 

Routine to compute low and test for articulation points 
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Fig. 4.8.4 Depth First Tree For Fig (4.8) With Num and Low. 

Low can be computed by performing a postorder traversal of the depth - first spanning tree. (ie) 

Low (F) = Min (Num (F), Num (D)) 

/* Since there is no tree edge & only one back edge */ 

= Min (6, 4) = 4 

Low (F) = 4 

Low (E) = Min (Num (E), Low (F)) 

/* there is no back edge */. 

= Min (5, 4) = 4 

Low (D) = Min (Num (D), Low (E), Num (A)) 

= Min (4,4,1) = 1 

Low (D) = 1 

Low (G) = Min (Num (G)) = 7 /* Since there is no tree edge & back edge */ 

Low (C) = Min (Num (C), Low (D), Low (G)) 

= Min (3,1,7) = 1 

Low (C) = 1 . 

lllly Low (B) = Min (Num (B), Low (C)) 

= Min (2,1) = 1 

Low (A) = Min (Num (A), Low (B)) 

= Min (1, 1) = 1 

Low (A) = 1. 

A 

(1/1) 

B 

(2/1) 

C 
(3/1) 

D 
(4/1) 

G
 (7/7) 

E 
(5/4) 

F 
(6/4) 
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From fig (4.8) it is clear that Low (G) > Num (C) (ie) 7 > 3 /* if Low (W)  Num (V)*/ the ‗v‘ is 

an articulation pt Therefore ‗C‘ is an articulation point. 

lllly Low (E) = Num (D), Hence D is an articulation point. 

4.9 EULER’S CIRCUIT 

Euler path 

A graph is said to be containing an Euler path if it can be traced in 1 sweep without  

lifting the pencil from the paper and without tracing the same edge more than once. Vertices 

may be passed through more than once. The starting  and  ending  points  need  not  be  the 

same. 

Euler circuit 

An Euler circuit is similar to an Euler path, except that the starting and ending points 

must be the same. 

It is  interesting that  Euler never  published  an algorithm for finding an  Euler circuit,  

but only provided a method of determining if one existed or not.  In a note from Ed Sandifer    

he states, ―In his paper on the Konigsberg Bridge Problem, all he says about finding such  

paths is that if you remove all double edges, then it will be easy to find a solution‖. 

Euler went on to generalize this mode of thinking, laying  a  foundation  for  graph  

theory. Using modern vocabulary, we make the following definitions and prove at theorem: 

Definition: 

A network is a figure made up of points (vertices) connected by non-intersecting 

curves (arcs). 

Definition: 

A vertex is called odd if it has an odd number of arcs  leading to it,  otherwise it  is  

called even. 

Definition: 

An Euler path is a continuous path that passes through every are once and only once. 

Theorem: 

If a network has more than two odd vertices, it does not have an Euler path. 

Euler also proved this: 

Theorem: 

If a network has  two or zero odd vertices, it has atleast one Euler path.  In particular,      

if a network has exactly two odd vertices, then its Euler paths can  only start  on  one of  the  

odd vertices, and end on the other -- a type of Euler path called an Euler circuit. 
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Problem 

The seven bridges of konigsberg 
 

 

Fig. 4.9 

The river Pregel separates the city of Konigsberg into 4 separate  regions  and  the  
regions are connected by 7 bridges. In the summer evenings,  the  citizens  of  the  country 
would like to have a walk around the whole city.  Some curious citizens  wondered whether      
it is  possible to  begin  at one  of the regions, cross each bridge exactly once  and  return to    
the same starting point. Can the citizen‘s suggestion be made possible? 

Solution: 

We can observe that each vertex has an odd number of edges.  For example, vertex A      
is of degree 5 and vertex B is of  degree 3.  Therefore  the citizen‘s suggestion  is impossible.  
As each edge can be used  only once  and  all  vertices  are  odd, it  is impossible  to re-enter  

any vertex again after leaving it, and this makes starting and ending at the same point 
impossible. 

Problems 

For each of the networks below, determine  whether it  has an  Euler path. If it does,  
find one. 

 
Graph 1 Graph 2 

Graph 3
 

 

Graph 4 Graph 4 Graph 6 

Fig. 4.9 
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Graph 

Number of odd 

vertices(vertices 

connected to an odd 

number of edges) 

Number of even 

vertices (vertices 

connected to an 

even number of 

edges 

What does the path contain? 

(Euler path = P; 

Euler circuit = C; 

Neither = N) 

1 0 10 C 

2 0 6 C 

3 2 6 P 

4 2 4 P 

5 4 1 N 

6 8 0 N 

 

From the above table, we can observe that: 

1. A graph with all vertices being even contains an Euler circuit. 

2. A graph with 2 odd vertices and some even vertices contains an Euler path. 

3. A graph with more than 2 odd vertices does not contain any Euler path or circuit. 

4.10. APPLICATIONS OF GRAPHS 

1. Social network graphs: to tweet or not to tweet. Graphs that represent who knows whom, 

who communicates with whom, who influences whom or other relationships in 

socialstructures. An example is the twitter graph of who follows whom. These can be used 

to determine how information flows, how topics become hot, how communities develop, 

or even who might be a good match for who, or is that whom. 

2. Transportation networks. In road networks vertices are intersections and edges are the 

road segments between them, and for public transportation networks vertices are stops and 

edges are the links between them. Such networks are used by many map programs such as 

Google maps, Bing maps and now Apple IOS 6 maps (well perhaps without the public 

transport) to find the best routes between locations. They are also used for studying traffic 

patterns, traffic light timings, and many aspects of transportation. 

3. Utility graphs. The power grid, the Internet, and the water network are all examples of 

graphs where vertices represent connection points, and edges the wires or pipes between 

them. Analyzing properties of these graphs is very important in understanding the reliability 

of such utilities under failure or attack, or in minimizing the costs to build infrastructure 

that matches required demands. 

4. Document link graphs. The best known example is the link graph of the web, where each 

web page is a vertex, and each hyperlink a directed edge. Link graphs are used, for example, 

to analyze relevance of web pages, the best sources of information, and good link sites. 
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5. Protein-protein interactions graphs. Vertices represent proteins and edges represent 

interactions between them that carry out some biological function in the cell. These graphs 

can be used, for example, to study molecular pathways—chains of molecular interactions 

in a cellular process. Humans have over 120K proteins with millions of interactions among 

them. 

6. Network packet traffic graphs. Vertices are IP (Internet protocol) addresses and edges 

are the packets that flow between them. Such graphs are used for analyzing network security, 

studying the spread of worms, and tracking criminal or non-criminal activity. 

7. Scene graphs. In graphics and computer games scene graphs represent the logical or spacial 

relationships between objects in a scene. Such graphs are very important in the computer 

games industry. 

8. Finite element meshes. In engineering many simulations of physical systems, such as the 

flow of air over a car or airplane wing, the spread of earthquakes through the ground, or the 

structural vibrations of a building, involve partitioning space into discrete elements. The 

elements along with the connections between adjacent elements forms a graph that is called 

a finite element mesh. 

9. Robot planning. Vertices represent states the robot can be in and the edges the possible 

transitions between the states. This requires approximating continuous motion as a sequence 

of discrete steps. Such graph plans are used, for example, in planning paths for autonomous 

vehicles. 

10. Neural networks. Vertices represent neurons and edges the synapses between them. Neural 

networks are used to understand how our brain works and how connections change when 

we learn. The human brain has about 1011 neurons 

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight

Administrator
Highlight



Non Linear Data Structures - Graphs 4.2 
 

A B 

C D 

 
 

PART - A 

1. Define a graph 

2. Compare directed graph and undirected graph 

3. Define path, degree and cycle in a graph 

4. What is an adjacency matrix? 

5. Give the adjacency list for the following graph 

 

 

6. Define Topological Sort 

7. Define Shortest path problem. Give examples 

8. Define Minimum Spanning Tree and write its properties. 

9. What is DAG? Write its purpose 

10. What are the different ways of traversing a graph? 
 

11. What are the various applications of depth first search? 
 

12. What is an articulation point? 
 

13. When a graph is said to be bi-connected? 
 

14. Write down the recursive routine for depth first search. 
 

15. Write a procedure to check the biconnectivity of the graph using DFS. 
 

16. Define Class_NP 
 

17. What is meant by NP_Complete problem? 
 

18. Define Euler oath and Euler circuit. 
 

19. Write the routine for Breadth first traversel. 
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B G 

5 2 3 1 

A
  2  

7 

C
  7  

2 

F 

2 1 
D   7  E 

A B 

4 4 2 3 

C
  5 

D
  11  

E 

2 1 

6 3 
F   4  G 

V1 V2 

V3 V4 V5 

V6  V7 

PART - B 

1. What is Topological Sort? Write down the pseudocode to perform 

topological sort and apply the same to the following graph. 

2. Explain the Dijkstra‘s algorithm and find the shortest path from A to all 

other vertices in the following graph. 
1
 

 

 

 

 
 

3. Explain Prim‘s and Kruskal‘s algorithm in detail and find the minimum 

spanning tree for the following graph. 
3 

 

 

 

 

 

 

 
 

4. Find all the articulation points in the given graph. Show the depth_first 

spanning tree and the values of Num and Low for each vertex. 

B E 

 
 
 

C F  H 

 

 
A 

 


