
19UCB206 - INTRODUCTION TO DATA STRUCTURES
& ALGORITHMS (R-2019)

Mrs.P.Suganthi, Assistant Professor(SG)
DEPARTMENT OF COMPUTER SCIENCE AND BUSNIESS SYSTEMS

1* UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM
AND DATA ORGANISATION

Algorithm specification, Recursion, Performance analysis,

Asymptotic Notation - The Big-O, Omega and Theta notation,

Programming Style, Refinement of Coding - Time-Space Trade Off,

Testing, Data Abstraction

2

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO
ALGORITHM AND DATA ORGANISATION

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION 2*

DATA STRUCTURES

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

3

What is the "Data Structure" ?
• Ways to represent data.
• It is the representation of the logical relationship existing between

individual elements of data.
• It is a specialized format for organizing and sorting data in memory that

considers not only the elements sorted but also their relationship to each
other.

Why data structure ?
• To design and implement large-scale computer system
• Have proven correct algorithms
• The art of programming

How to master in data structure ?
• practice, discuss, and think

*

ALGORITHM SPECIFICATION

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

4

Definition
An algorithm is a finite set of instructions that, if followed, accomplishes a

particular task. In addition, all algorithms must satisfy the following

criteria:

(1)Input. There are zero or more quantities that are externally supplied.

(2)Output. At least one quantity is produced.

(3)Definiteness. Each instruction is clear and unambiguous.

(4)Finiteness. If we trace out the instructions of an algorithm, then for all

cases, the algorithm finish or terminates after a finite number of steps.

(5)Effectiveness. All operations to be accomplished must be sufficiently basic

that they can be done exactly and in finite length

*

DESCRIBING ALGORITHMS

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

5

Natural language

English, Chinese

Instructions must be definite and effectiveness

Graphic representation

Flowchart

work well only if the algorithm is small and simple

Pseudo language

Readable

Instructions must be definite and effectiveness

*

TRANSLATING A PROBLEM INTO AN ALGORITHM

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

6

Problem
Devise a program that sorts a set of n>= 1 integers

Step I – Concept

From those integers that are currently unsorted, find the smallest and
place it next in the sorted list

Step II – Algorithm

for (i= 0; i< n; i++){
 Examine list[i] to list[n-1] and suppose that the smallest integer is

list[min];
 Interchange list[i] and list[min];
 }

*

TRANSLATING A PROBLEM INTO AN
ALGORITHM(CONT.)

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

7

Step III - Coding

void sort(int *a, int n)
{
 for (i= 0; i< n; i++)
 {
 int j= i;
 for (int k= i+1; k< n; k++){
 if (a[k]< a[j]) j= k;
 int temp=a[i]; a[i]=a[j]; a[j]=temp;
 }
}

*

RECURSIVE ALGORITHMS

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

8

In recursion, a function or method has the ability of calling itself to solve the
problem.

Types
Direct recursion

Functions call themselves
Indirect recursion

Functions call other functions that invoke the calling function again

When is recursion an appropriate mechanism?
The problem itself is defined recursively
Statements: if-else and while can be written recursively

Why recursive algorithms ?
which you can use recursion or iteration
Powerful, express an complex process very clearly

*

PERFORMANCE ANALYSIS

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

9

Performance analysis - prior

• an important branch of CS, complexity theory

• estimate time and space

• machine independent

Performance measurement -posterior

• The actual time and space requirements

• machine dependent

Space and time

• Does the program efficiently use primary and secondary storage?

• Is the program's running time acceptable for the task?

*

PERFORMANCE ANALYSIS

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

10

Evaluate a program generally
• Does the program meet the original specifications of the task?
• Does it work correctly?
• Does the program contain documentation that show how to use it and how

it works?
• Does the program effectively use functions to create logical units?
• Is the program's code readable?

Evaluate a program
MWGWRERE
• Meet specifications, Work correctly,

Good user-interface, Well-documentation,
Readable, Effectively use functions,
Running time acceptable, Efficiently use space

How to achieve them?
• Good programming style, experience, and practice
• Discuss and think

*

SPACE COMPLEXITY

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

11

Definition

• Space complexity is the amount of space required to solve an algorithm.
• The space complexity of a program is the amount of memory that it needs to

run to completion.

The space needed is the sum of Fixed space and Variable space

Fixed space
• Includes the instructions, variables, and constants
• Independent of the number and size of I/O

Variable space
• Includes dynamic allocation, functions' recursion

Total space of any program
� S(P)= c+ Sp(Instance)

where c is a fixed space , which is independent of input and output . It is a constant.
where sp(Instance) is variable space and it depends on Instance.

*

TIME COMPLEXITY

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

12

❑ Definition
❑ Time complexity is the amount of time taken by an algorithm to execute a

task.
❑ The time complexity, T(p), taken by a program P is the sum of the compile

time and the run time

❑ Total time
❑ T(P) = compile time + run (or execution) time
 = c + tp(instance characteristics)
 Compile time does not depend on the instance characteristics

❑ How to evaluate?
❑ Use the system clock
❑ Number of steps performed

❑ machine-independent

❑ Definition of a program step
❑ A program step is a syntactically or semantically meaningful program

segment whose execution time is independent of the instance characteristics
(10 additions can be one step, 100 multiplications can also be one step)

*

EXAMPLES OF DETERMINING STEPS

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

13*

2n+ 2

the first method: count by a program
float rsum(float list[], int n)
{
 count ++; /* for if condition */
 if (n) {
 count++; /* for return and rsum invocation */
 return rsum(list, n-1)+ list[n-1];
 }
 count++; //return
 return list[0];
}

rsum(0) = 2
rsum(n) = 2 + rsum(n-1)
 = 2 + 2 + rsum(n-2)
 = 2 + 2 + rsum(n-3)
 = …
 = 2n + rsum(0)= 2n+2

void add(int a[][MaxSize], int b[][MaxSize],
int c[][MaxSize], int rows, int cols)

{
 int i, j;
 for (i=0; i< rows; i++)
 for (j=0; j< cols; j++)
 c[i][j]= a[i][j] + b[i][j];
 }

2rows*cols+ 2rows+ 1

EXAMPLES OF DETERMINING STEPS

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

14*

❑The second method: build a table to count

Statement s/e Frequency Total Steps

void add(int a[][MaxSize], . . . 0 0 0
{ 0 0 0
 int i, j; 0 0 0
 for (i=0; i< rows; i++) 1 rows+ 1 rows+ 1
 for (j=0; j< cols; j++) 1 rows*(cols+1) rows*cols+ rows
 c[i][j]= a[i][j] + b[i][j]; 1 rows*cols rows*cols
 } 0 0 0

Total 2rows*cols+2rows+1

REMARKS OF TIME COMPLEXITY

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

15

❑ Difficulty: the time complexity is not dependent solely on the number of inputs
or outputs

❑ To determine the step count
❑ Best case, Worst case, and Average

Best Case:
The amount of time the algorithm takes on best set of inputs.

Worst Case:
The amount of time the algorithm takes on the worst possible set of inputs.

Average Case:
The amount of time the algorithm takes on an average set of inputs.

*

DATA ABSTRACTION

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

16

Types of data

• All programming language provide at least minimal set of
predefined data type, plus user defined types

Data types of C
• Char, int, float, and double

• may be modified by short, long, and unsigned
• Array, struct, and pointer

*

DATA TYPE

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

17

Definition
• A data type is a collection of objects and a set of operations that

act on those objects

Example of "int"
• Objects: 0, +1, -1, ..., Int_Max, Int_Min
• Operations: arithmetic(+, -, *, /, and %),

testing(equality/inequality), assigns, functions

Define operations
• Its name, possible arguments and results must be specified

The design strategy for representation of objects
• Transparent to the user

*

ABSTRACT DATA TYPE

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

18

Definition
• An abstract data type(ADT) is a data type that is organized

in such a way that the specification of the objects and the
specification of the operations on the objects is separated
from the representation of the objects and the
implementation of the operation.

Why abstract data type ?
• implementation-independent

*

CLASSIFYING THE FUNCTIONS OF A DATA TYPE

UNIT I BASIC TERMINOLOGIES &INTRODUCTION TO ALGORITHM AND DATA
ORGANISATION

19

Creator/constructor:
• Create a new instance of the designated type.

Transformers
• Also create an instance of the designated type by using one or

more other instances.

Observers/reporters
• Provide information about an instance of the type, but they do not

change the instance
Notes

• An ADT definition will include at least one function from each of
these three categories

*

