
UNIT 2-DESIGN PATTERNS

GRASP Designing Objects with responsibilities-Creator-

Information Expert-Low Coupling-High Cohesion-

Controller-Design Patterns-Creational-Factory method-

Structural-Bridge-Adapter-Behavoural-Strategy-Observer-

Applying GOF design patterns.

GRASP

GRASP Means General Responsibility Assignment

Software Patterns .

• GRASP is a learning aid that helps to understand essential

object design and apply design reasoning in a methodical,

rational and explainable way.

• GRASP is used as a tool to help master the basics of OOD

and understanding responsibility assignment in object design.

There are nine basic OO design principles in GRASP. They

are,

1. Creator

2. Information Expert

3. Low Coupling

4. High Cohesion

5. Controller

6. Polymorphism

7. Pure Fabrication

8. Indirection

9. Protected Variations

CREATOR

Creation of objects is one of the most common activities in an
object oriented system. Which class is responsible for creating
objects is a fundamental property of relationship between
objects of particular classes.

Problem

Who should be responsible for creating a new instance of
some class?

Solution:

Assign class B the responsibility to create an instance of a
class A if one of these is true,

➢ B contains or compositely aggregates A

➢ B records A

➢ B closely uses A

➢ B has the initializing data for A that will be passed to A
when it is created.

Thus B is an expert with respect to creating A

B is a creator of A objects

If more than one option applies, usually prefer a class B

which aggregates or contains A.

Partial Domain Model

1

1..* Contains

* Described by 1

Sale
Date time

Sale Line item
Quantity

Product spec

Description

Creating a Sales line item

Make line item Create(Qnt)

Since a Sale contains many Sales LineItem objects, the
Creator pattern suggests that Sale is a good candidate to
have the responsibility of creating SalesLineltem
instances.

This assignment of responsibilities requires that a
makeLineltem method be defined in Sale. The method
section of class diagram can then summarize the
responsibility assignment results, concretely realized as
methods.

Register

Sale
lineitem

sale

INFORMATION EXPERT

Problem

What is a general principle of assigning responsibilities to

objects?

Solution:

Assign a responsibility to the information expert-the class

that has the information

necessary to full fill the responsibility.

• What information is needed to determine the grand total? A

Sale instance contains these; therefore, by the guideline of

Information Expert, Sale is a suitable class of object for this

responsibility.

• The Sales Line ltem knows its quantity and its associated

Product Specification; therefore, by Expert, Sales Line ltem

should determine the subtotal; it is the information expert.

t:=gettotal() 1*:st=getsubtotal()

Partial Interaction and Class Diagram *

Sale SaleLineitem

t:=gettotal() 1*:st=getsubtotal()

p:=getprice()

Fig: Calculating the Sale total

• The Product Specification is an Information Expert on

answering its price, therefore SalesLineItem send it a

message asking for the product price.

sale Salelineitem

Product
specification

To full fill the responsibility of knowing and answering the

sale’s total, three responsibilities were assigned to three

design classes of objects as follows.

DESIGN CLASS DESCRIPTION

Sale Knows sale total

Sales line item Knows the line item subtotal

Product specification Knows product price

LOW COUPLING

Coupling is a measure of how strongly one element is

connected to, has knowledge of, or relies on other

elements. An element with low (or weak) coupling is not

dependent on too many other elements.

A class with high (or strong) coupling relies on many other

classes. Such classes may be undesirable; some suffer

from the following problems,

• Forced local changes because of changes in related

classes.

• Harder to understand in isolation.

• Harder to reuse because its use requires the additional

presence of the classes on which it is dependent.

Problem:

How to support low dependency, low change impact, and
increased reuse?

Solution:

Assign a responsibility so that coupling remains low.

Partial Class Domain:

Assume that a Payment instance is to be created and
associated with the Sale. What class should be responsible
for this? Since a Register "records" a Payment in the real-
world domain, the Creator pattern suggests Register as a
candidate for creating the Payment. The Register instance
could then send an addpayment message to the Sale, passing
along the new Payment as a parameter.

Payment Register Sale

Register creates Payment
Make payment() 1:Create()

2:Add payment()

Assignment of responsibilities couples the Register class to
knowledge of payment class.

Alternative solution to create payment and associate it with
Sale.

Register P:payment

sale

Sales creates payment

makepayment()

1.1makepayment()

1.1Create()

Register sale

payment

HIGH COHESION

Cohesion

Cohesion is a measure of how strongly related and focused
the responsibilities of an element

are. An element with highly related responsibilities, and
which does not do a tremendous amount of work, has high
cohesion. These elements include classes, subsystems, and
so on.

Problem

How to keep objects focused, understandable, and
manageable, and as a side effect, support Low Coupling?

Solution:

Assign a responsibility so that cohesion remains high.

A class with low cohesion does many unrelated things, or
does too much work. Such classes are undesirable; they
suffer from the following problems:

✓ Hard to comprehend

✓ Hard to reuse

✓ Hard to maintain

✓ Delicate; constantly affected by change.

Example

Assume that a Payment instance is to be created and associate

it with the Sale. What class should be responsible for this?

Since Register records a Payment in the real-world domain,

the Creator pattern suggests Register as a candidate for

creating the Payment. The Register instance could then send

an addPayment message to the Sale, passing along the new

Payment as a parameter.

Register Creates Payment

makepayment() Create()

addpayment()

Register

payment

sale

CONTROLLER

A Controller is the first object beyond the UI layer that is
responsible for receiving or handling a system operation
message.

Problem

What first object beyond the UI layer receives and
coordinates(controls) a system operation?

Solution:

Assign the responsibility to a class representing one of the
following choices,

✓ Represents the overall system, “a root object”, a device that
the software is running within, or a major subsystem.

✓ Represents a use case scenario within which the system
event occurs.

Example: NextGen POS application

System

Endsale()
Enteritem()

makeNewsale()
Makepayment()

Controller Class

During design, a controller class is assigned the

responsibility for system operation.

The system Operations identified during system behaviour

analysis are assigned to one or more controller classes, such

as Register,

System

Endsale()
Enteritem()

Makepayment()
makeNewreturn()
Enterreturnitem()

Register

Endsale()
Enteritem()

Makepayment()
makeNewreturn()
Enterreturnitem()

Bloated Controller

Poorly designed, a controller class will have low cohesion.

unfocused and handling

too many areas of responsibility; this is called a bloated

controller.

Signs of bloating include:

✓ There is only a single controller class receiving all system

events in the system, and there are many of them.

✓ The controller itself performs many of the tasks necessary to

fullfill the system event, without delegating the work

✓A controller has many attributes, and maintains significant

information about the system or domain, which should have

been distributed to other objects, or duplicates information

found elsewhere.

Cures for a bloated controller

✓Add more controllers-a system does not have to have
only one. For example, consider an application with
many system events, such as an airline reservation
system.

✓ Design the controller so that it primarily delegates the
fullfillment of each system operation responsibility on to
other objects.

Use Case Controller

MakeReservationController

ManagescheduleHandler

ManagesfaresHandler

POLYMORPHISM

• How to handle related but varying elements based on

element type?

• Polymorphism guides us in deciding which object is

responsible for handling those varying elements.

• Benefits: handling new variations will become easy.

Examples for polymorphism

• the getArea() varies by the type of shape, so we assign

that responsibility to the subclasses.

• By sending message to the Shape object, a call will be

made to the corresponding sub class object – Circle or

Triangle.

Shape
Get area()

Circle
Get area()

Triangle
Get area()

PURE FABRICATION

• Fabricated class/ artificial class – assign set of related

responsibilities that doesn't represent any domain object.

• Provides a highly cohesive set of activities.

• Behavioural decomposed – implements some algorithm.

• Examples: Adapter, Strategy

• Benefits: High cohesion, low coupling and can reuse this

class.

Example

• Suppose we Shape class, if we must store the shape data in a

database.

• If we put this responsibility in Shape class, there will be

many database related operations thus making Shape in

cohesive.

INDIRECTION

• How can we avoid a direct coupling between two or more

elements.

• Indirection introduces an intermediate unit to communicate

between the other units, so that the other units are not

directly coupled.

• Benefits: low coupling

• Example: Adapter, Facade, Observer

Example

Get totalsalry() Get Empsalary()

• Here polymorphism illustrates indirection

• Class Employee provides a level of indirection to other

units of the system.

Salary Employee

PROTECTED VARIATION

• How to avoid impact of variations of some elements on the

other elements.

• It provides a well defined interface so that the there will

be no affect on other units.

• Provides flexibility and protection from variations.

• Provides more structured design.

DESIGN PATTERN

• Design patterns represent solutions to problems that arise
when developing software within a particular context.

“Patterns == problem/solution pairs in a context”

• Patterns capture the static and dynamic structure and
collaboration among key participants in software designs.

Especially good for describing how and why to resolve
non-functional issues

• Patterns facilitate reuse of successful software architectures
and designs.

APPLICATIONS

• Wide variety of application domains:

drawing editors, banking, CAD, CAE, cellular network

management, telecomm switches, program visualization

• Wide variety of technical areas:

user interface, communications, persistent objects, O/S

kernels, distributed systems

What is Design Pattern?

Each pattern describes a problem which occurs over and over

again in our environment and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it in the same

way twice”

Christopher Alexander, A Pattern Language, 1977

A pattern has 4 essential elements:

• Pattern name

• Problem

• Solution

• Consequences

Pattern Name

•A handle used to describe:

• a design problem,

• its solutions and

• its consequences

• Increases design vocabulary

• Makes it possible to design at a higher level of abstraction

• Enhances communication

Problem

•Describes when to apply the pattern

• Explains the problem and its context

• Might describe specific design problems or class or object

structures

• May contain a list of conditions

• must be met

• before it makes sense to apply the pattern

Solution

•Describes the elements that make up the

• design,

• their relationships,

• responsibilities and

• collaborations

• Does not describe specific concrete implementation

• Abstract description of design problems and

• how the pattern solves it

Consequences

•Results and trade-offs of applying the pattern

• Critical for:

• evaluate design alternatives and

• understand costs and

• understand benefits of applying the pattern

• Includes the impacts of a pattern on a system’s:

• flexibility,

• extensibility

• portability

Where Design Patterns

Are Used

•Object-Oriented Programming Languages:

• more amenable to implementing design patterns

• Procedural languages: need to define

• Inheritance,

• Polymorphism and

• Encapsulation

TYPES OF DESIGN PATTERN

• Creational

• Structural

• Behavioral

Creational:

Class: defer some part of object creation to subclasses

Object: Defer object creation to another object

Structural:

Class: use inheritance to compose classes

Object: describe ways to assemble classes

Behavioral:

Class: use inheritance to describe algs and flow of control

Object: describes how a group of objects cooperate to
perform task that no single object can complete

Creational Patterns

Factory Method:

method in a derived class creates associations

Abstract Factory:

Factory for building related objects

Builder:

Factory for building complex objects incrementally

Prototype:

Factory for cloning new instances from a prototype

Singleton:

Factory for a singular (sole) instance

Structural Patterns

Adapter:

Translator adapts a server interface for a client

Bridge:

Abstraction for binding one of many implementations

Composite:

Structure for building recursive aggregations

Decorator:

Decorator extends an object transparently

Facade:

simplifies the interface for a subsystem

Flyweight:

many fine-grained objects shared efficiently.

Proxy:

one object approximates another

Behavioral Patterns
Chain of Responsibility

request delegated to the responsible service provider
Command:

request is first-class object
Iterator:

Aggregate elements are accessed sequentially
Interpreter:

language interpreter for a small grammar
Mediator:

coordinates interactions between its associates
Memento:

snapshot captures and restores object states privately
Observer:

dependents update automatically when subject changes
State:

object whose behavior depends on its state

Strategy:

Abstraction for selecting one of many algorithms

Template Method:

algorithm with some steps supplied by a derived class

Visitor:

operations applied to elements of a heterogeneous object

structure

Benefits of Design Patterns

• Design patterns enable large-scale reuse of software

architectures

also help document systems

• Patterns explicitly capture expert knowledge and design

tradeoffs

make it more widely available

• Patterns help improve developer communication

Pattern names form a vocabulary

• Patterns help ease the transition to OO technology

Drawbacks to Design Patterns

• Patterns do not lead to direct code reuse

• Patterns are deceptively simple

Teams may suffer from pattern overload

• Patterns are validated by experience and discussion rather

than by automated testing

• Integrating patterns into a SW development process is a

human-intensive activity

