
15UCS502 - OBJECT ORIENTED
ANALYSIS AND DESIGN

Presented by,

K.A.MOHAMMED FAIZ,

Asst.prof /CSE Dept ,

SIT.

SYLLABUS

UNIT 1:

Introduction to OOAD – unified process – UML diagram –

use case – class diagrams – interaction diagrams – state

diagrams – activity diagrams – package ,component and

deployment diagrams.

OOAD (OBJECT ORIENTED ANALYSIS AND

DESIGN)

INTRODUCTION OF OOAD

What is OOAD?

OOAD Is a Software engineering approach that models a

system as a group of interacting objects.

HOW to do OOAD

OO Technology Process Perspective

OO Prog Languages

Smalltalk,C++

Just a Program

OO Design Design the Program

OO Analysis Analyse use case first and then

Design

OO Design Patterns

Each Design pattern systematically names, explains and

evaluates an important and recurring design in Object

oriented systems.

Name: Identifies a particular pattern, creating a

vocabulary

Problem: Identifies context when pattern should be

applied.

Solution: An abstract description of a design problem

along with a template object design that solve the

problem

Analysis

Understanding, finding and describing concepts in the

problem domain.

Design

Understanding and finding software solution/objects that

represent the analysis concepts and will eventually be

implemented in code.

• Software development is a dynamic and always undergoing

major change.

• System Development refers to all activities that go into

producing information system solution.

• System Development activities consist of

-> System analysis

-> Modeling

-> Design

-> Implementation

-> Testing and maintenance

OBJECT ORIENTED PARADIGM

• Paradigm: It is a way of seeing and doing things.

• OOP: Object Oriented programming

Organizing software as a collection of objects with certain state

and behavior.

• OOD: Object Oriented Design

Based on the Identification & Organization of objects.

• OOM: Object Oriented Methodology

Construction Of Models.

The Development of S/W is a Modeling process.

• OOMD: Object Oriented Modeling and Design.

Modeling Objects based on the Real world.

Using these Models to design independently of a programming

languages.

OBJECTS:

 Object is a complex data type that has an identity.

 It contains other data type is called attributes.

 The Modules of code called Operations or Methods.

 Attributes and associated values are hidden inside the

object.

 Any Object that wants to change or obtain a value

associated with other object.

 Sending a message to one of the objects is a invoking

method.

OBJECTS

Object: Women

Attributes(values)

Methods (Operations)

AGE:30
SALARY:10K

AGE:30
SALARY:5

ENCAPSUALTION:

 Each Object methods manage its own attributes is called

as hiding.

 An object A can learn about the values of attributes of

another object B.

 Example:

Class: Lady

Attributes: Age , salary

Methods: get_age , set_salary

CLASSES:

 Classes are templates that have methods and attribute

names and type information, but no actual values.

 Objects are generated by these classes and they

actually contain values.

 We design an application at the class level.

 When the System is running Objects are created by

classes as they are needed to contain state

information.

MESSAGE PAASING & AGGREGATION:

 Methods are associated with classes but classes

don’t send messages to each other.

 A static diagram(class diagram) shows classes and

the logical associations between classes.it doesn’t

show the movement of messages.
 An association between two classes means that

object of two classes can send messages to each

other.

 Aggregation: when an object contains other

objects.(a part-whole relationship)

CLASS HIERARCHIES & INHERITANCE:

 Classes can be arranged in hierarchies so that more
classes inherit attributes and methods from more
abstract classes.

Class

Sub Classes

A B

PUBLIC,PRIVATE & PROTECTED:

 Attributes can be public or private:

• Private: It can only be accessed by its own methods.

• Public: It can be modified by methods associated

with any class.

 Methods can be public , private or protected:

• Public: Its name is exposed to other objects.

• Private: It can’t be accessed by other objects only

internally.

• Protected:(special case) only subclasses that decent

directly from a class that

METHOD SIGNATURE:

 It is the method’s name and the parameters that

must be passed with the message in order for the

method to function.

 The parameters are the important because they

assure that the method will function properly.

 Compiler or interpreter allow to discriminate

between two different methods with the same time.

POLYMORPHISM:

 It means that the same method will behave

differently when it applied to the objects of different

classes.

 It also means that different methods associated with

different classes can interpret the same message in

different ways.

 Example: An object can send a message PRINT to

several objects, and each one will use it’s own

PRINT method to execute the message.

OMT-OBJECT ORIENTED METHODOLOGY

Object Analysis

Object Design

Problem statement

Object model

Dynamic model

Functional model

System Design
Object Design

Implementation

 Object Model:

It describes the static structure of the objects in the

system and relationships

->Object diagram

 Dynamic Model:

It describes the interaction among objects in the system-

>state diagram.

 Functional Model:

It describes the data transformation of the system.

 Analysis:

Model the real world showing the important properties.

 System Design:

Organize into subsystem based on analysis structure.

 Object Design:

Based on analysis model focus on data structure and

algorithms to implement each class.

 Implementation:

Translate object classes and relationship into programming

languages.

SOFTWARE DEVELOPMENT

METHODOLOGY

-> series of processes

-> Can lead to the development of an application.

->Practices, Procedures and rules used to develop software,

totally based on system requirements.

ORTHOGONAL VIEWS OF SOFTWARE

• Two Approaches

-> Traditional Approach

-> Object Oriented Approach

• TRADITIONAL APPROACH

-> Collection of Programs or Functions.

-> A system is designed for performing certain action.

-> Algorithms+Data structures=Programs.

->Software Development Models(waterfall,Spiral,Incremental)

• OBJECT ORIENTED APPROACH

-> Based on Functions and Procedures.

->Software is a collection of discrete object that encapsulate

their data as well as fuctionality.

-> Each Object has attributes(properties) and

method(Procedures).

-> Objects grouped into the classes and object are responsible

for itself.

Difference between Traditional

approach and Object oriented approach

TRADITIONAL APPROACH OBJECT ORIENTED APPROACH

Collection of procedure(Functions) Combination of data and

functionality

Focuses on function and

procedures

Focuses on object and Classes

modules

Moving from one phase to another

phase is complex

Moving from one phase to another

phase is easier

Increases duration of project Decreases duration of project

Increases complexity Reduces Complexity

UNIFIED PROCESS(UP)

• The Unified Process has emerged as a popular iterative

software development process for building object oriented

system.

• The UP combines commonly accepted best practices

-> iterative life cycle

-> Risk driven-development.

Key Concepts in UP

• Apply Use cases

• Build Cohesive, Core architecture in early iteration.

• Provides Visual modeling using UML.

UP PHASES

There are 4 Phases in unified Process

• Inception

• Elaboration

• Construction

• Transition

INCEPTION

Inception is the initial stage of the Project. Inception is

not a requirements phase but it is a Feasibility phase.

It deals with

-> Approximate vision

-> Business case

-> Scope

ELABORATION

In Elaboration Phase team is expected to capture majority of

the system requirements.

It deals with

• Refined vision

• Resolution of high risk

• Identification of more requirements and scope

CONSTRUCTION

Construction phase encompasses on iterative

implementation of

• lower risk

• Easier elements

• Preparation of deployment

TRANSITION

Transition phase focus on releasing the final product to

the customer for usability.

UP DISCIPLINES

• UP describes work activities such as writing a use case

within disciplines a set of activities and related artifacts in

one subject within requirement analysis.

• Artifact any work such as code, graphics, text documents,

diagrams, models

Several UP Disciplines

• Business Modeling:

Domain model artifact to visualize concepts in application

domain.

• Requirements:

Use case model specification artifact to capture Functional and

Non functional requirements.

• Design:

All aspects of design including overall

Architecture, objects, database, networks.

UML DIAGRAMS

• UML means Unified Modeling Language

• It is a standard notation for the modeling of real world

objects

• UML is a visual language for

 Specifying

 Constructing

 Documenting

Types of UML Diagrams

 Use case diagram

 Class diagram

 Interaction diagram

• Sequence diagram

• Collaboration diagram or communication

 State diagram

 Activity diagram

 Package diagram

 Component diagram

 Deployment diagram

Three ways to apply UML

1. UML as sketch:

Informal and incomplete diagrams created to explore difficult

parts of the problem.

2. UML as blueprint:

Detailed design diagram used for better understanding of

code.

3.UML as Programming language:

Complete executable specification of a software system in

UML.

Three Perspectives to apply UML

1. Conceptual perspective:

Diagrams describe the things of real world.

2. Specification perspective:

Diagrams describe software abstractions or components

with specification and interfaces.

3.Implementation perspective:

Diagrams describe software implementation in a

particular technology.

USE CASE DIAGRAM

• USE case diagrams are used to describe a set of actions

(use cases) some system or systems should or can

perform in collaboration with one or more external uses

of the system (actors).

• Each use case should provide some observable and

valuable result to the actors or other stakeholders of the

system.

Purpose:

1. 1.Used to gather requirements of a system.

2. 2.Used to get an outside view of a system.

3. 3.Identify external and internal factors influencing the

system.

4. 4.Show the interaction among the requirements through

actors

USES:

1. Requirwment analysis and high level design

2. Model the context of a system

3. Reverse engineering

4. Forword engineering

NOTATIONS:

SAMPLE EXAMPLE – ATM SYSTEM

